Atomistic Tight-binding Modeling of III-Nitride Materials and Field Effect Transistors

S. Sharmin1, H. Ilatikhameneh1, Y. Tan1, B. Novakovic1, T. Ameen1, J. Lyons2, C. Van de Walle2, Wenjun Li3, Patrick Fay3, R. Rahman1 & G. Klimeck1

1Purdue University, IN 2University of California Santa Barbara, CA 3University of Notre Dame, IN

Ill-Nitride as a prospective TFET

- **Advantage**: Possibility of subthreshold swing \(60\) mV/decade → lower power consumption
- **Drawback**: Tunneling based drive current → low I\textsubscript{on}

Tunneling rate increase in Ill-Nitride TFETs

- Large polarization field → small tunneling length
- Small effective masses (e.g., bulk In\textsubscript{0.5}Ga\textsubscript{0.5}As)
- Tunneling through low bandgap material → efficient tunneling

Proposal & Experiments: Jens, Fay, Seabaugh (Notre Dame)

III-Nitride as a prospective TFET

- **Advantage**: Possibility of subthreshold swing \(60\) mV/decade → lower power consumption
- **Drawback**: Tunneling based drive current → low I\textsubscript{on}

Tunneling rate increase in Ill-Nitride TFETs

- Large polarization field → small tunneling length
- Small effective masses (e.g., bulk In\textsubscript{0.5}Ga\textsubscript{0.5}As)
- Tunneling through low bandgap material → efficient tunneling

Proposal & Experiments: Jens, Fay, Seabaugh (Notre Dame)

Band Structure: TB model of GaN and InN

- **GaN**: Valence bands
- **InN**: Low energy conduction bands
- **TB model**: spin-orbit model with nearest neighbor couplings
- **Bandgap and effective masses**:

Mechanical Structure: Strain and Band Edges

- **Strain is significant inside the InN channel**
- **High strain values greatly affect the band structure around the channel**

L-shaped vs planar TFET: Gate control

- **Gate field**: \(V\textsubscript{G}=10\) V, \(V\textsubscript{G}=6.5\) V
- **Gate current**: \(I\textsubscript{on}=10\) mA, \(I\textsubscript{on}=6.5\) mA

Summary of I-V curve for III-Nitride TFETs

- **L-shaped vs planar geometry**:
 - **L-shaped provides better electrostatics**
 - **Design parameters** \(L\textsubscript{sh}, L\textsubscript{p}, \ldots\) are most important parameters
 - **Effect of strain**: Piezoelectric strain modifies band structure in the channel, hence possibility to control tunneling

Future Work

- **Model inhomogeneous/atomic polarization in the device.**
- **Study how strain modifies bandgap, effective mass etc.** and hence, contributes to tunneling
- **Role of InGa\textsubscript{N} alloy in TFET performance.**
- **Role of deep acceptor levels.**

Theme 2383.002 : Quantum Engineered Steep Transistor

Task D.2.4: Atomistic Carrier Transport Modeling for Steep Devices